Abstract
High-throughput sequencing is a robust tool used for identifying and tracking pathogen outbreaks. Whole-genome sequencing of hepatitis A virus (HAV) remains poor due to ultra-low viral loads, limitations of next-generation sequencing technology, and its high costs in clinical applications. This study evaluated multiplex polymerase chain reaction (PCR)-based nanopore sequencing to obtain whole-genome sequences of HAV. The HAV genomes were obtained directly from patient specimens for a rapid molecular diagnosis of viral genotypes. Serum and stool samples were collected from six patients with hepatitis A infection. Amplicon-based nanopore sequencing was performed from the clinical specimens to identify HAV genotypes by acquiring nearly complete-genome sequences. TaqMan-based quantitative PCR (qPCR) was conducted to detect and quantify multiple HAV genes. Singleplex-based nanopore sequencing demonstrated high genome coverage rates (90.4–99.5%) of HAV within 8 h, at viral RNA loads of 10 to 105 copies/μL. TaqMan qPCR showed multiplex quantification of HAV genes namely, VP0, VP3, and 3C. This study provides useful insights into rapid molecular diagnosis during hepatitis A outbreaks and may ultimately augment public health disease surveillance in the hospital and epidemiology field.
Funder
Institute of Biomedical Science and Food Safety
Korea Institute of Marine Science and Technology promotion
National Research Foundation of Korea
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献