Assessing the potential of polygenic scores to strengthen medical risk prediction models of COVID-19

Author:

Córdova-Palomera AldoORCID,Siffel CsabaORCID,DeBoever Chris,Wong Emily,Diogo Dorothée,Szalma SandorORCID

Abstract

As findings on the epidemiological and genetic risk factors for coronavirus disease-19 (COVID-19) continue to accrue, their joint power and significance for prospective clinical applications remains virtually unexplored. Severity of symptoms in individuals affected by COVID-19 spans a broad spectrum, reflective of heterogeneous host susceptibilities across the population. Here, we assessed the utility of epidemiological risk factors to predict disease severity prospectively, and interrogated genetic information (polygenic scores) to evaluate whether they can provide further insights into symptom heterogeneity. A standard model was trained to predict severe COVID-19 based on principal component analysis and logistic regression based on information from eight known medical risk factors for COVID-19 measured before 2018. In UK Biobank participants of European ancestry, the model achieved a relatively high performance (area under the receiver operating characteristic curve ~90%). Polygenic scores for COVID-19 computed from summary statistics of the Covid19 Host Genetics Initiative displayed significant associations with COVID-19 in the UK Biobank (p-values as low as 3.96e-9, all with R2 under 1%), but were unable to robustly improve predictive performance of the non-genetic factors. However, error analysis of the non-genetic models suggested that affected individuals misclassified by the medical risk factors (predicted low risk but actual high risk) display a small but consistent increase in polygenic scores. Overall, the results indicate that simple models based on health-related epidemiological factors measured years before COVID-19 onset can achieve high predictive power. Associations between COVID-19 and genetic factors were statistically robust, but currently they have limited predictive power for translational settings. Despite that, the outcomes also suggest that severely affected cases with a medical history profile of low risk might be partly explained by polygenic factors, prompting development of boosted COVID-19 polygenic models based on new data and tools to aid risk-prediction.

Funder

Takeda Development Center Americas, Inc.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Relationship of socio-demographics, comorbidities, symptoms and healthcare access with early COVID-19 presentation and disease severity;L. Vaughan;BMC Infect Dis,2021

2. Incremental Risk of Developing Severe COVID-19 Among Mexican Patients With Diabetes Attributed to Social and Health Care Access Disadvantages;S.G. Sosa-Rubi;Diabetes Care,2021

3. Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: a Systematic Review and Meta-Analysis;A. Emami;Arch Acad Emerg Med,2020

4. Centers for Disease Control and Prevention. Science Brief: Evidence used to update the list of underlying medical conditions that increase a person’s risk of severe illness from COVID-19. 2021 May 12, 2021 [cited 2021 August 11, 2021]; https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/underlying-evidence-table.html.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3