Disruption of T-box transcription factor eomesa results in abnormal development of median fins in Oujiang color common carp Cyprinus carpio

Author:

Song Shiying,Du Bobo,Chung-Davidson Yu-Wen,Cui Wenyao,Li Yaru,Chen Honglin,Huang Rong,Li Weiming,Li Fei,Wang Chenghui,Ren JianfengORCID

Abstract

Median fins are thought to be ancestors of paired fins which in turn give rise to limbs in tetrapods. However, the developmental mechanisms of median fins remain largely unknown. Nonsense mutation of the T-box transcription factor eomesa in zebrafish results in a phenotype without dorsal fin. Compared to zebrafish, the common carp undergo an additional round of whole genome duplication, acquiring an extra copy of protein-coding genes. To verify the function of eomesa genes in common carp, we established a biallelic gene editing technology in this tetraploidy fish through simultaneous disruption of two homologous genes, eomesa1 and eomesa2. We targeted four sites located upstream or within the sequences encoding the T-box domain. Sanger sequencing data indicated the average knockout efficiency was around 40% at T1-T3 sites and 10% at T4 site in embryos at 24 hours post fertilization. The individual editing efficiency was high to about 80% at T1-T3 sites and low to 13.3% at T4 site in larvae at 7 days post fertilization. Among 145 mosaic F0 examined at four months old, three individuals (Mutant 1–3) showed varying degrees of maldevelopment in the dorsal fin and loss of anal fin. Genotyping showed the genomes of all three mutants were disrupted at T3 sites. The null mutation rates on the eomesa1 and eomesa2 loci were 0% and 60% in Mutant 1, 66.7% and 100% in Mutant 2, and 90% and 77.8% in Mutant 3, respectively. In conclusion, we demonstrated a role of eomesa in the formation and development of median fins in Oujiang color common carp and established an method that simultaneously disrupt two homologous genes with one gRNA, which would be useful in genome editing in other polyploidy fishes.

Funder

Open Project Foundation from Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries

Development of Genetic Improvement Technique for Ornamental Fish

SHOU&MSU Joint Research Center grant

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3