Two decades of change in sea star abundance at a subtidal site in Puget Sound, Washington

Author:

Casendino Helen R.ORCID,McElroy Katherine N.,Sorel Mark H.,Quinn Thomas P.,Wood Chelsea L.

Abstract

Long-term datasets can reveal otherwise undetectable ecological trends, illuminating the historical context of contemporary ecosystem states. We used two decades (1997–2019) of scientific trawling data from a subtidal, benthic site in Puget Sound, Washington, USA to test for gradual trends and sudden shifts in total sea star abundance across 11 species. We specifically assessed whether this community responded to the sea star wasting disease (SSWD) epizootic, which began in 2013. We sampled at depths of 10, 25, 50 and 70 m near Port Madison, WA, and obtained long-term water temperature data. To account for species-level differences in SSWD susceptibility, we divided our sea star abundance data into two categories, depending on the extent to which the species is susceptible to SSWD, then conducted parallel analyses for high-susceptibility and moderate-susceptibility species. The abundance of high-susceptibility sea stars declined in 2014 across depths. In contrast, the abundance of moderate-susceptibility species trended downward throughout the years at the deepest depths– 50 and 70 m–and suddenly declined in 2006 across depths. Water temperature was positively correlated with the abundance of moderate-susceptibility species, and uncorrelated with high-susceptibility sea star abundance. The reported emergence of SSWD in Washington State in the summer of 2014 provides a plausible explanation for the subsequent decline in abundance of high-susceptibility species. However, no long-term stressors or mortality events affecting sea stars were reported in Washington State prior to these years, leaving the declines we observed in moderate-susceptibility species preceding the 2013–2015 SSWD epizootic unexplained. These results suggest that the subtidal sea star community in Port Madison is dynamic, and emphasizes the value of long-term datasets for evaluating patterns of change.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3