Application of grey feed forward back propagation-neural network model based on wavelet denoising to predict the residual settlement of goafs

Author:

Zhang Xiangdong,Li WenliangORCID,Zhang Xuefeng,Cai Guanjun,Meng Kejing,Shen Zhen

Abstract

To study the residual settlement of goaf’s law and prediction model, we investigated the Mentougou mining area in Beijing as an example. Using MATLAB software, the wavelet threshold denoising method was used to optimize measured data, and the grey model (GM) and feed forward back propagation neural network model (FFBPNN) were combined. A grey feed forward back propagation neural network (GM-FFBPNN) model based on wavelet denoising was proposed, the prediction accuracy of different models was calculated, and the prediction results were compared with original data. The results showed that the prediction accuracy of the GM-FFBPNN was higher than that of the individual GM and FFBPNN models. The mean absolute percentage error (MAPE) of the combined model was 7.39%, the root mean square error (RMSE) was 49.01 mm, the scatter index (SI) was 0.06%, and the BIAS was 2.42%. The original monitoring data were applied to the combination model after wavelet denoising, and MAPE and RMSE were only 1.78% and 16.05 mm, respectively. Compared with the combined model before denoising, the prediction error was reduced by 5.61% and 32.96 mm. Thus, the combination model optimized by wavelet analysis had a high prediction accuracy, strong stability, and accorded with the law of change of measured data. The results of this study will contribute to the construction of future surface engineering in goafs and provide a new theoretical basis for similar settlement prediction engineering, which has strong popularization and application value.

Funder

the National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3