Offline EEG hyper-scanning using anonymous walk embeddings in tacit coordination games

Author:

Zuckerman Inon,Mizrahi DorORCID,Laufer Ilan

Abstract

In this paper we present a method to examine the synchrony between brains without the need to carry out simultaneous recordings of EEG signals from two people which is the essence of hyper-scanning studies. We used anonymous random walks to spatially encode the entire graph structure without relying on data at the level of individual nodes. Anonymous random walks enabled us to encapsulate the structure of a graph regardless of the specific node labels. That is, random walks that visited different nodes in the same sequence resulted in the same anonymous walk encoding. We have analyzed the EEG data offline and matched each possible pair of players from the entire pool of players that performed a series of tacit coordination games. Specifically, we compared between two network patterns associated with each possible pair of players. By using classification performed on the spatial distance between each pair of individual brain patterns, analyzed by the random walk algorithm, we tried to predict whether each possible pair of players has managed to converge on the same solution in each tacit coordination game. Specifically, the distance between a pair of vector embeddings, each associated with one of the players, was used as input for a classification model for the purpose of predicting whether the two corresponding players have managed to achieve successful coordination. Our model reached a classification accuracy of ~85%.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference31 articles.

1. Defecting or not defecting: How to “read” human behavior during cooperative games by EEG measurements.;F De Vico Fallani;PLoS One,2010

2. Neural dynamics of two players when using nonverbal cues to gauge intentions to cooperate during the Prisoner’s Dilemma Game.;J Jahng;Neuroimage.,2017

3. Anonymous Walk Embeddings.;S Ivanov;ICML,2018

4. Variational pathway reasoning for EEG emotion recognition;T Zhang;Proceedings of the AAAI Conference on Artificial Intelligence,2020

5. empirical fluctuation functions of the EEG microstate random walk-short-range vs. long-range correlations;Wegner F von;Analytical andNeuroimage,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3