Identification and characterization of two novel KCNH2 mutations contributing to long QT syndrome

Author:

Owusu-Mensah AnthonyORCID,Treat Jacqueline,Bernardi Joyce,Pfeiffer Ryan,Goodrow Robert,Tsevi BrightORCID,Lam Victoria,Audette Michel,Cordeiro Jonathan M.,Deo Makarand

Abstract

We identified two different inherited mutations in KCNH2 gene, or human ether-a-go-go related gene (hERG), which are linked to Long QT Syndrome. The first mutation was in a 1-day-old infant, whereas the second was in a 14-year-old girl. The two KCNH2 mutations were transiently transfected into either human embryonic kidney (HEK) cells or human induced pluripotent stem-cell derived cardiomyocytes. We performed associated multiscale computer simulations to elucidate the arrhythmogenic potentials of the KCNH2 mutations. Genetic screening of the first and second index patients revealed a heterozygous missense mutation in KCNH2, resulting in an amino acid change (P632L) in the outer loop of the channel and substitution at position 428 from serine to proline (S428P), respectively. Heterologous expression of P632L and S428P into HEK cells produced no hERG current compared to the wild type (WT). Moreover, the co-transfection of WT and P632L yielded no hERG current; however, the co-transfection of WT and S428P yielded partial hERG current. Action potentials were prolonged in a complete or partial blockade of hERG current from computer simulations which was more severe in Purkinje than ventricular myocytes. Three dimensional simulations revealed a higher susceptibility to reentry in the presence of hERG current blockade. Our experimental findings suggest that both P632L and S428P mutations may impair the KCNH2 gene. The Purkinje cells exhibit a more severe phenotype than ventricular myocytes, and the hERG current blockade renders the ventricles an arrhythmogenic substrate from computer modeling.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3