Abstract
Alveolar macrophages (AMs) are the predominant innate immune cell in the distal respiratory tract. During inflammatory responses, AMs may be supplemented by blood monocytes, which differentiate into monocyte-derived macrophages (MDMs). Macrophages play important roles in a variety of common equine lower airway diseases, including severe equine asthma (SEA). In an experimental model, an inhaled mixture of Aspergillus fumigatus spores, lipopolysaccharide, and silica microspheres (FLS), induced SEA exacerbation in susceptible horses. However, whether equine AMs and MDMs have differing immunophenotypes and cytokine responses to FLS stimulation is unknown. To address these questions, alveolar macrophages/monocytes (AMMs) were isolated from bronchoalveolar lavage fluid and MDMs derived from blood of six healthy horses. Separately, AMMs and MDMs were cultured with and without FLS for six hours after which cell surface marker expression and cytokine production were analyzed by flow cytometry and a bead-based multiplex assay, respectively. Results showed that regardless of exposure conditions, AMMs had significantly higher surface expression of CD163 and CD206 than MDMs. Incubation with FLS induced secretion of IL-1β, IL-8, TNF-α and IFN-γ in AMMs, and IL-8, IL-10 and TNF-α in MDMs. These results suggest that AMMs have a greater proinflammatory response to in vitro FLS stimulation than MDMs, inferring differing roles in equine lung inflammation. Variability in recruitment and function of monocyte-macrophage populations warrant more detailed in vivo investigation in both homeostatic and diseased states.
Funder
Equine Guelph
Ontario Ministry of Agriculture, Food and Rural Affairs
Publisher
Public Library of Science (PLoS)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献