Probiotics of Lacticaseibacillus paracasei SD1 and Lacticaseibacillus rhamnosus SD11 attenuate inflammation and β-cell death in streptozotocin-induced type 1 diabetic mice

Author:

Nopparat JongdeeORCID,Khuituan Pissared,Peerakietkhajorn Saranya,Teanpaisan Rawee

Abstract

Probiotics provide health benefits in various aspects and are believed to modulate the immune system by balancing gut microbiota homeostasis, termed the “microbiota-immune axis”. Recent evidence supports that several Lactobacillus strains possess glucose-lowering and anti-inflammatory effects in an animal model of type 1 diabetes (T1D). Although probiotics of Lacticaseibacillus paracasei SD1 (SD1) and Lacticaseibacillus rhamnosus SD11 (SD11) exert human oral health benefits by reducing harmful bacterial populations, their clinical application regarding hypoglycemic-related traits as well as the underlying mechanisms are still lacking. In this report, we used multiple low doses of streptozotocin (STZ)-induced diabetic BALB/c mice to explore the effects of SD1 and SD11 supplementation on the regulation of markers related to T1D. Experimental mice were randomly assigned into five groups, non-STZ + V, STZ + V, STZ + SD1, STZ + SD11, and STZ + SDM (mixture of SD1 and SD11), and physiological data were measured every week. Blood and pancreas samples were collected at 4- and 8-weeks. Our results indicate that supplementation with SD1, SD11, or SDM for 8 weeks significantly improved body weights, glycemic levels, glucose tolerance, insulin levels, and lipid profiles. Probiotic administration also preserved islet integrity and increased β-cell mass in STZ-injected mice, as well as prevented infiltration of macrophages, CD4+, and CD8+ T cells into the islets. Significantly, SD1 and SD11 suppressed the levels of IL1-β, TNF-α and IFN-γ and increased IL-10, which is concomitant with the inhibition of cleaved caspase 3, caspase 9, caspase 8, proapoptotic Bax, NF-κBp65, pSTAT1, and iNOS. Additionally, the survival ability of β-cells was mediated by upregulated anti-apoptotic Bcl2. We conclude that SD1 and SD11 attenuate STZ-induced diabetic mice by stabilizing glycemic levels and reducing inflammation, thereby protecting β-cells. Among the probiotic treatment groups, SD11 revealed the best results in almost all parameters, indicating its potential use for alleviating hyperglycemia-associated symptoms.

Funder

National Science, Research and Innovation Fund (NSRF) and Prince of Songkla University

the Center of Excellence for Trace Analysis and Biosensor

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3