Deep-learning detection of mild cognitive impairment from sleep electroencephalography for patients with Parkinson’s disease

Author:

Parajuli Madan,Amara Amy W.,Shaban MohamedORCID

Abstract

Parkinson’s disease which is the second most prevalent neurodegenerative disorder in the United States is a serious and complex disease that may progress to mild cognitive impairment and dementia. The early detection of the mild cognitive impairment and the identification of its biomarkers is crucial to support neurologists in monitoring the progression of the disease and allow an early initiation of effective therapeutic treatments that will improve the quality of life for the patients. In this paper, we propose the first deep-learning based approaches to detect mild cognitive impairment in the sleep Electroencephalography for patients with Parkinson’s disease and further identify the discriminative features of the disease. The proposed frameworks start by segmenting the sleep Electroencephalography time series into three sleep stages (i.e., two non-rapid eye movement sleep-stages and one rapid eye movement sleep stage), further transforming the segmented signals in the time-frequency domain using the continuous wavelet transform and the variational mode decomposition and finally applying novel convolutional neural networks on the time-frequency representations. The gradient-weighted class activation mapping was also used to visualize the features based on which the proposed deep-learning approaches reached an accurate prediction of mild cognitive impairment in Parkinson’s disease. The proposed variational mode decomposition-based model offered a superior accuracy, sensitivity, specificity, area under curve, and quadratic weighted Kappa score, all above 99% as compared with the continuous wavelet transform-based model (that achieved a performance that is almost above 92%) in differentiating mild cognitive impairment from normal cognition in sleep Electroencephalography for patients with Parkinson’s disease. In addition, the features attributed to the mild cognitive impairment in Parkinson’s disease were demonstrated by changes in the middle and high frequency variational mode decomposition components across the three sleep-stages. The use of the proposed model on the time-frequency representation of the sleep Electroencephalography signals will provide a promising and precise computer-aided diagnostic tool for detecting mild cognitive impairment and hence, monitoring the progression of Parkinson’s disease.

Funder

National Center for Advancing Translational Research of the National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference80 articles.

1. Parkinson’s disease: mechanisms, and models;W. Dauer;Neuron,2003

2. Assessment of Parkinson Disease Manifestations;J. Perlmutter;Current Protocols in Neuroscience,2009

3. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis;G. Rizzo;Neurology,2016

4. Parkinson’s Foundation, “Statistics: Get informed about Parkinson’s disease with these key numbers”, https://www.parkinson.org/understanding-parkinsons/statistics (accessed: March 12, 2023).

5. Deep-Learning for Parkinson’s Disease Diagnosis: A Short Survey;M. Shaban;Computers,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3