Transcriptomic analyses of juvenile Striped Bass (Morone saxatilis) exposed to chronic and acute temperature change

Author:

Penny Faith M.ORCID,Pavey Scott A.

Abstract

Striped Bass are economically important, migratory fishes, which occur across a wide range of latitudes. Given their wide-ranging nature, Striped Bass can cope with a broad range of environmental temperatures, yet the mechanisms underlying this ability have not been thoroughly described. Heat shock proteins (HSPs) are inducible molecular chaperones, which help mitigate protein damage resulting from increased temperatures. The importance of HSPs has been demonstrated in a number of fish species, but their role in Striped Bass is poorly understood. This study characterizes changes in gene expression in juvenile Striped Bass, following acute and chronic temperature change. Fish were acclimated to one of three temperatures (15, 25 or 30°C) and sampled at one of two treatments (control or after CTmax), following which we assessed differential gene expression and gene ontology in muscle. It is clear from our differential expression analyses that acclimation to warm temperatures elicits more robust changes to gene expression, compared to acute temperature increases. Our differential expression analyses also revealed induction of many different heat shock proteins, includinghsp70,hsp90,hsp40and other small HSPs, after both acute and chronic temperature increase in white muscle. Furthermore, the most consistent gene ontology pattern that emerged following both acclimation and CTmaxwas upregulation of transcripts involved in “protein folding”, which also include heat shock proteins. Gene ontology analyses also suggest changes to other processes after acclimation, including decreased growth pathways and changes to DNA methylation. Overall, these data suggest that HSPs likely play a major role in the Striped Bass’s ability to tolerate warm waters.

Funder

New Brunswick Innovation Foundation

Natural Sciences and Engineering Research Council of Canada

Canada Excellence Research Chairs, Government of Canada

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3