Abstract
Random walks on graphs are often used to analyse and predict epidemic spreads and to investigate possible control actions to mitigate them. In this study, we first show that models based on random walks with a single stochastic agent (such as Google’s popular PageRank) may provide a poor description of certain features of epidemic spread: most notably, spreading times. Then, we discuss another Markov chain based method that does reflect the correct mean infection times for the disease to spread between individuals in a network, and we determine a procedure that allows one to compute them efficiently via a sampling strategy. Finally, we present a novel centrality measure based on infection times, and we compare its node ranking properties with other centrality measures based on random walks. Our results are provided for a simple SI model for epidemic spreading.
Funder
The Italian Ministry of University and Research
The Natural Sciences and Engineering Research Council of Canada
Gruppo Nazionale per il Calcolo Scientifico
The University of Pisa’s project
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献