Aspirin modulates production of pro-inflammatory and pro-resolving mediators in endothelial cells

Author:

Rood Kara M.,Patel Niharika,DeVengencie Ivana M.ORCID,Quinn John P.,Gowdy Kymberly M.,Costantine Maged M.,Kniss Douglas A.

Abstract

Endothelial cells synthesize biochemical signals to coordinate a response to insults, resolve inflammation and restore barrier integrity. Vascular cells release a variety of vasoactive bioactive lipid metabolites during the inflammatory response and produce pro-resolving mediators (e.g., Lipoxin A4, LXA4) in cooperation with leukocytes and platelets to bring a halt to inflammation. Aspirin, used in a variety of cardiovascular and pro-thrombotic disorders (e.g., atherosclerosis, angina, preeclampsia), potently inhibits proinflammatory eicosanoid formation. Moreover, aspirin stimulates the synthesis of pro-resolving lipid mediators (SPM), so-called Aspirin-Triggered Lipoxins (ATL). We demonstrate that cytokines stimulated a time- and dose-dependent increase in PGI2 (6-ketoPGF) and PGE2 formation that is blocked by aspirin. Eicosanoid production was caused by cytokine-induced expression of cyclooxygenase-2 (COX-2). We also detected increased production of pro-resolving LXA4 in cytokine-stimulated endothelial cells. The R-enantiomer of LXA4, 15-epi-LXA4, was enhanced by aspirin, but only in the presence of cytokine challenge, indicating dependence on COX-2 expression. In contrast to previous reports, we detected arachidonate 5-lipoxygenase (ALOX5) mRNA expression and its cognate protein (5-lipoxygenase, 5-LOX), suggesting that endothelial cells possess the enzymatic machinery necessary to synthesize both pro-inflammatory and pro-resolving lipid mediators independent of added leukocytes or platelets. Finally, we observed that, endothelial cells produced LTB4 in the absence of leukocytes. These results indicate that endothelial cells produce both pro-inflammatory and pro-resolving lipid mediators in the absence of other cell types and aspirin exerts pleiotropic actions influencing both COX and LOX pathways.

Funder

College of Medicine Office of Research, Ohio State University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3