A cyber-physical system to design 3D models using mixed reality technologies and deep learning for additive manufacturing

Author:

Malik AmmarORCID,Lhachemi Hugo,Shorten Robert

Abstract

I-nteract is a cyber-physical system that enables real-time interaction with both virtual and real artifacts to design 3D models for additive manufacturing by leveraging mixed-reality technologies. This paper presents novel advances in the development of the interaction platform to generate 3D models using both constructive solid geometry and artificial intelligence. In specific, by taking advantage of the generative capabilities of deep neural networks, the system has been automated to generate 3D models inferred from a single 2D image captured by the user. Furthermore, a novel generative neural architecture, SliceGen, has been proposed and integrated with the system to overcome the limitation of single-type genus 3D model generation imposed by differentiable-rendering-based deep neural architectures. The system also enables the user to adjust the dimensions of the 3D models with respect to their physical workspace. The effectiveness of the system is demonstrated by generating 3D models of furniture (e.g., chairs and tables) and fitting them into the physical space in a mixed reality environment. The presented developmental advances provide a novel and immersive form of interaction to facilitate the inclusion of a consumer into the design process for personal fabrication.

Funder

Science Foundation Ireland, European Regional Development Fund, I-Form industry partners

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference62 articles.

1. Industry 4.0 technologies: Implementation patterns in manufacturing companies;AG Frank;International Journal of Production Economics,2019

2. Davies R. Industry 4.0: Digitalisation for productivity and growth. 2015;.

3. Industry 4.0 and The Sharing Economy

4. 3D opportunity: Additive manufacturing paths to performance, innovation, and growth;M Cotteleer;Deloitte Review,2014

5. Opportunities of sustainable manufacturing in industry 4.0;T Stock;Procedia CIRP,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3