Copper price prediction using LSTM recurrent neural network integrated simulated annealing algorithm

Author:

Chen JiahaoORCID,Yi Jiahui,Liu Kailei,Cheng Jinhua,Feng YinORCID,Fang Chuandi

Abstract

Copper is an important mineral and fluctuations in copper prices can affect the stable functioning of some countries’ economies. Policy makers, futures traders and individual investors are very concerned about copper prices. In a recent paper, we use an artificial intelligence model long short-term memory (LSTM) to predict copper prices. To improve the efficiency of long short-term memory (LSTM) model, we introduced a simulated annealing (SA) algorithm to find the best combination of hyperparameters. The feature engineering problem of the AI model is then solved by correlation analysis. Three economic indicators, West Texas Intermediate Oil Price, Gold Price and Silver Price, which are highly correlated with copper prices, were selected as inputs to be used in the training and forecasting model. Three different copper price time periods, namely 485, 363 and 242 days, were chosen for the model forecasts. The forecast errors are 0.00195, 0.0019 and 0.00097, respectively. Compared with the existing literature, the prediction results of this paper are more accurate and less error. The research in this paper provides a reliable reference for analyzing future copper price changes.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3