Abstract
Background
Patient outcomes are influenced by many confounding factors peri-operatively, including the type of surgery, anaesthesia, transfusion, and immune competence. We have previously demonstrated (in-vitro) that compared to allogeneic blood transfusion (ABT), intraoperative cell salvage (ICS) improves immune competence. The peri-operative immune response is complex. Altered or impaired immune responses may predispose patients to develop adverse outcomes (i.e., post-operative wound infection, pneumonia, urinary tract infection etc.) Surgical patients may develop infection, even without the confirmed presence of a definite microbiological pathogen. With all these factors in mind it is important to consider changes in immune cell numbers (and sub-populations) and functional capacity during peri-operative transfusion.
Methods
In this TRIMICS-Cell (Transfusion Related Immune Modulation and Intraoperative Cell Salvage-Cell numbers) study (n = 17, October 2018-November 2019) we prioritized and analysed peri-operative changes in the number and proportions of immune cell populations and sub-populations (B cells (CD20+), NK (natural killer) cells (CD56+), monocytes (CD14+), T cells (total CD3+ and sub-populations: T helper cells (CD4+), cytotoxic T cells (CD8+), effector T cells (CD4+ CD127+), activated effector T cells (CD4+ CD25+ CD127+) and regulatory T cells (CD4+ CD25+ CD127-)), plasmacytoid dendritic cells (pDC; Lineage-, HLA-DR+, CD11c-, CD123+), classical dendritic cell (cDC) (Lineage-, HLA-DR+, CD11c+), and cDC activation (Lineage-, HLA-DR+, CD11c+), co-stimulatory/adhesion molecules and pDC (CD9+, CD38+, CD80+, CD83+, CD86+, CD123+). Firstly we analysed the whole cohort of study patients and secondly according to the relevant transfusion modality (i.e., three study groups: those who received no transfusion, received ICS only (ICS), or both ICS and allogeneic packed red blood cells (pRBC) (ICS&RBC)), during major orthopaedic surgery.
Results
For the whole study cohort (all patients), changes in immune cell populations were significant: leucocytes and specifically neutrophils increased post-operatively, returning towards pre-operative numbers by 48h post-operatively (48h), and lymphocytes reduced post-operatively returning to pre-operative numbers by 48h. When considering transfusion modalities, there were no significant peri-operative changes in the no transfusion group for all immune cell populations studied (cell numbers and proportions (%)). Significant changes in cell population numbers (i.e., leucocytes, neutrophils and lymphocytes) were identified in both transfused groups (ICS and ICS&RBC). Considering all patients, changes in immune cell sub-populations (NK cells, monocytes, B cells, T cells and DCs) and functional characteristics (e.g., co-stimulation markers, adhesion, activation, and regulation) were significant peri-operatively and when considering transfusion modalities. Interestingly DC numbers and functional capacity were specifically altered following ICS compared to ICS&RBC and pDCs were relatively preserved post-operatively following ICS.
Conclusion
A transient peri-operative alteration with recovery towards pre-operative numbers by 48h post-surgery was demonstrated for many immune cell populations and sub-populations throughout. Immune cell sub-populations and functional characteristics were similar peri-operatively in those who received no transfusion but changed significantly following ICS and ICS&RBC. Interesting changes that require future study are a post-operative monocyte increase in the ICS&RBC group, changes in cDC considering transfusion modalities, and possibly preserved pDC numbers post-operatively following ICS. Future studies to assess changes in immune cell sub-populations, especially during peri-operative transfusion, while considering post-operative adverse outcomes, is recommended.
Funder
National Blood Authority
Australian and New Zealand College of Anaesthetists
Publisher
Public Library of Science (PLoS)
Reference52 articles.
1. 2021 Annual SHOT report.;SHOT (serious hazards of transfusion);SHOT webpage,2023
2. Transfusion-related immunomodulation (TRIM): an update.;EC Vamvakas;Blood reviews (Blood Rev).,2007
3. Intraoperative cell salvage: A technology built upon the failures, fads and fashions of blood transfusion.;M Roets;Anaesthesia and Intensive Care.,2019