AI-Driven sleep staging from actigraphy and heart rate

Author:

Song Tzu-An,Chowdhury Samadrita RoyORCID,Malekzadeh Masoud,Harrison Stephanie,Hoge Terri Blackwell,Redline Susan,Stone Katie L.ORCID,Saxena Richa,Purcell Shaun M.,Dutta JoyitaORCID

Abstract

Sleep is an important indicator of a person’s health, and its accurate and cost-effective quantification is of great value in healthcare. The gold standard for sleep assessment and the clinical diagnosis of sleep disorders is polysomnography (PSG). However, PSG requires an overnight clinic visit and trained technicians to score the obtained multimodality data. Wrist-worn consumer devices, such as smartwatches, are a promising alternative to PSG because of their small form factor, continuous monitoring capability, and popularity. Unlike PSG, however, wearables-derived data are noisier and far less information-rich because of the fewer number of modalities and less accurate measurements due to their small form factor. Given these challenges, most consumer devices perform two-stage (i.e., sleep-wake) classification, which is inadequate for deep insights into a person’s sleep health. The challenging multi-class (three, four, or five-class) staging of sleep using data from wrist-worn wearables remains unresolved. The difference in the data quality between consumer-grade wearables and lab-grade clinical equipment is the motivation behind this study. In this paper, we present an artificial intelligence (AI) technique termed sequence-to-sequence LSTM for automated mobile sleep staging (SLAMSS), which can perform three-class (wake, NREM, REM) and four-class (wake, light, deep, REM) sleep classification from activity (i.e., wrist-accelerometry-derived locomotion) and two coarse heart rate measures—both of which can be reliably obtained from a consumer-grade wrist-wearable device. Our method relies on raw time-series datasets and obviates the need for manual feature selection. We validated our model using actigraphy and coarse heart rate data from two independent study populations: the Multi-Ethnic Study of Atherosclerosis (MESA; N = 808) cohort and the Osteoporotic Fractures in Men (MrOS; N = 817) cohort. SLAMSS achieves an overall accuracy of 79%, weighted F1 score of 0.80, 77% sensitivity, and 89% specificity for three-class sleep staging and an overall accuracy of 70-72%, weighted F1 score of 0.72-0.73, 64-66% sensitivity, and 89-90% specificity for four-class sleep staging in the MESA cohort. It yielded an overall accuracy of 77%, weighted F1 score of 0.77, 74% sensitivity, and 88% specificity for three-class sleep staging and an overall accuracy of 68-69%, weighted F1 score of 0.68-0.69, 60-63% sensitivity, and 88-89% specificity for four-class sleep staging in the MrOS cohort. These results were achieved with feature-poor inputs with a low temporal resolution. In addition, we extended our three-class staging model to an unrelated Apple Watch dataset. Importantly, SLAMSS predicts the duration of each sleep stage with high accuracy. This is especially significant for four-class sleep staging, where deep sleep is severely underrepresented. We show that, by appropriately choosing the loss function to address the inherent class imbalance, our method can accurately estimate deep sleep time (SLAMSS/MESA: 0.61±0.69 hours, PSG/MESA ground truth: 0.60±0.60 hours; SLAMSS/MrOS: 0.53±0.66 hours, PSG/MrOS ground truth: 0.55±0.57 hours;). Deep sleep quality and quantity are vital metrics and early indicators for a number of diseases. Our method, which enables accurate deep sleep estimation from wearables-derived data, is therefore promising for a variety of clinical applications requiring long-term deep sleep monitoring.

Funder

NIH

AAUW

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference69 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3