Novel breath biomarkers identification for early detection of hepatocellular carcinoma and cirrhosis using ML tools and GCMS

Author:

Ain Nazir Noor ul,Shaukat Muhammad Haroon,Luo Ray,Abbas Shah RukhORCID

Abstract

According to WHO 2019, Hepatocellular carcinoma (HCC) is the fourth highest cause of cancer death worldwide. More precise diagnostic models are needed to enhance early HCC and cirrhosis quick diagnosis, treatment, and survival. Breath biomarkers known as volatile organic compounds (VOCs) in exhaled air can be used to make rapid, precise, and painless diagnoses. Gas chromatography and mass spectrometry (GCMS) are utilized to diagnose HCC and cirrhosis VOCs. In this investigation, metabolically generated VOCs in breath samples (n = 35) of HCC, (n = 35) cirrhotic, and (n = 30) controls were detected via GCMS and SPME. Moreover, this study also aims to identify diagnostic VOCs for distinction among HCC and cirrhosis liver conditions, which are most closely related, and cause misleading during diagnosis. However, using gas chromatography-mass spectrometry (GC-MS) to quantify volatile organic compounds (VOCs) is time-consuming and error-prone since it requires an expert. To verify GC-MS data analysis, we present an in-house R-based array of machine learning models that applies deep learning pattern recognition to automatically discover VOCs from raw data, without human intervention. All-machine learning diagnostic model offers 80% sensitivity, 90% specificity, and 95% accuracy, with an AUC of 0.9586. Our results demonstrated the validity and utility of GCMS-SMPE in combination with innovative ML models for early detection of HCC and cirrhosis-specific VOCs considered as potential diagnostic breath biomarkers and showed differentiation among HCC and cirrhosis. With these useful insights, we can build handheld e-nose sensors to detect HCC and cirrhosis through breath analysis and this unique approach can help in diagnosis by reducing integration time and costs without compromising accuracy or consistency.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3