An autoregressive distributed lag approach for estimating the nexus between CO2 emissions and economic determinants in Pakistan

Author:

Daniyal MuhammadORCID,Tawiah KassimORCID,Qureshi MoizORCID,Haseeb Mohammad,Asosega Killian Asampana,Kamal Mustafa,Rehman Masood ur

Abstract

Carbon dioxide (CO2) emissions have become a critical aspect of the economic and sustainable development indicators of every country. In Pakistan, where there is a substantial increase in the population, industrialization, and demand for electricity production from different resources, the fear of an increase in CO2 emissions cannot be ignored. This study explores the link that betwixt CO2 emissions with different significant economic indicators in Pakistan from 1960 to 2018 using the autoregressive distributed lag (ARDL) modelling technique. We implemented the covariance proportion, coefficient of determination, the Durbin Watson D statistics, analysis of variance (ANOVA), variance inflating factor (VIF), the Breusch-Pagan test, the Theil’s inequality, the root mean quare error (RMSE), the mean absolute percentage error (MAPE), and the mean absolute error (MAE) for the diagnostics, efficiency, and validity of our model. Our results showed a significant association between increased CO2 emissions and increased electricity production from oil, gas, and other sources. An increase in electricity production from coal resources was seen to have resulted in a decrease in CO2 emissions. We observed that an increase in the gross domestic product (GDP) and population growth significantly contributed to the increased CO2 emissions. The increment in CO2 emissions resulting from industrial growth was not significant. The increment in CO2 emissions in the contemporary year is significantly associated with the preceding year’s increase. The rate of increase was very alarming, a sign that no serious efforts have been channelled in this regard to reduce this phenomenon. We call for policy dialogue to devise energy-saving and CO2 emission reduction strategies to minimize the impact of climate change on industrialization, population growth, and GDP growth without deterring economic and human growth. Electricity production from different sources with no or minimal CO2 emissions should be adopted. We also recommend rigorous tree planting nationwide to help reduce the concentration of CO2 in the atmosphere as well as environmental pollution.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3