A potential marker of radiation based on 16S rDNA in the rat model: Intestinal flora

Author:

Zhang Liying,Miao Zhiming,Li Yangyang,Xu Xiaomin,Zhou Ting,Zhang Yiming,Liu YongqiORCID

Abstract

The gastrointestinal microbiota plays an important role in the function of the host intestine. However, little is currently known about the effects of irradiation on the microorganisms colonizing the mucosal surfaces of the gastrointestinal tract. The aim of this study was to investigate the effects of X-ray irradiation on the compositions of the large intestinal Microbiotas of the rat. The gut microbiotas in control mice and mice receiving irradiation with different dose treatment were characterized by high-throughput sequencing of the bacterial 16S rDNA gene and their metabolites were detected by gas chromatography-mass spectrometry. Unexpectedly, the diversity was increased mildly at 2Gy irradiation, and dose dependent decreased at 4Gy, 6Gy, 8Gy irradiation. The phyla with large changes in phylum level are Firmicutes, Bacteroides and Proteobacteria; the abundance ratio of Firmicutes/Bacteroides is inverted; and when 8Gy is irradiated, the phylum abundance level was significantly increased. At the genus level, the abundance levels of Phascolarctobacterium, Ruminococcaceae and Lachnospiraceae increased at 2Gy irradiation, and significantly decreased at 4Gy, 6Gy, and 8Gy irradiation; the abundance level of Prevotellaceae diminished at 2Gy irradiation, and enhanced at 4Gy, 6Gy, 8Gy irradiation; The abundance level of Violet bacteria (Christenellaceae) and Lactobacillus attenuated in a dose-dependent manner; Lachnoclostridium enhanced in a dose-dependent manner; Bacteroides was in 4Gy, 6Gy, 8Gy The abundance level increased significantly during irradiation; the abundance level of Shigella (Escherichia-Shigella) only increased significantly during 8Gy irradiation. Lefse predicts that the biomarker at 0Gy group is Veillonellaceae, the biomarker at 2Gy group is Firmicutes, the biomarkers at 4Gy group are Dehalobacterium and Dehalobacteriaceae, the biomarkers at 6Gy group are Odoribacter, and the biomarkers at 8Gy group are Anaerotruncus, Holdemania, Proteus, Bilophila, Desufovibrionales and Deltaproteobacteria. Overall, the data presented here reveal that X-ray irradiation can cause imbalance of the intestinal flora in rats; different doses of irradiation can cause different types of bacteria change. Representative bacteria can be selected as biomarkers for radiation damage and repair.This may contribute to the development of radiation resistance in the future.

Funder

National Natural Science Foundation of China

Longyuan Youth Innovation and Entrepreneurship Talent Project in 2021

Natural Science Foundation of Gansu Province

China Postdoctoral Science Foundation Project

Lanzhou City Health Key Science and Technology Development Project

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3