Structural bioinformatics studies of glutamate transporters and their AlphaFold2 predicted water-soluble QTY variants and uncovering the natural mutations of L->Q, I->T, F->Y and Q->L, T->I and Y->F

Author:

Karagöl AlperORCID,Karagöl TanerORCID,Smorodina EvaORCID,Zhang ShuguangORCID

Abstract

Glutamate transporters play key roles in nervous physiology by modulating excitatory neurotransmitter levels, when malfunctioning, involving in a wide range of neurological and physiological disorders. However, integral transmembrane proteins including the glutamate transporters remain notoriously difficult to study, due to their localization within the cell membrane. Here we present the structural bioinformatics studies of glutamate transporters and their water-soluble variants generated through QTY-code, a protein design strategy based on systematic amino acid substitutions. These include 2 structures determined by X-ray crystallography, cryo-EM, and 6 predicted by AlphaFold2, and their predicted water-soluble QTY variants. In the native structures of glutamate transporters, transmembrane helices contain hydrophobic amino acids such as leucine (L), isoleucine (I), and phenylalanine (F). To design water-soluble variants, these hydrophobic amino acids are systematically replaced by hydrophilic amino acids, namely glutamine (Q), threonine (T) and tyrosine (Y). The QTY variants exhibited water-solubility, with four having identical isoelectric focusing points (pI) and the other four having very similar pI. We present the superposed structures of the native glutamate transporters and their water-soluble QTY variants. The superposed structures displayed remarkable similarity with RMSD 0.528Å-2.456Å, despite significant protein transmembrane sequence differences (41.1%—>53.8%). Additionally, we examined the differences of hydrophobicity patches between the native glutamate transporters and their QTY variants. Upon closer inspection, we discovered multiple natural variations of L->Q, I->T, F->Y and Q->L, T->I, Y->F in these transporters. Some of these natural variations were benign and the remaining were reported in specific neurological disorders. We further investigated the characteristics of hydrophobic to hydrophilic substitutions in glutamate transporters, utilizing variant analysis and evolutionary profiling. Our structural bioinformatics studies not only provided insight into the differences between the hydrophobic helices and hydrophilic helices in the glutamate transporters, but they are also expected to stimulate further study of other water-soluble transmembrane proteins.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3