Purification of recombinant bacterial collagens containing structural perturbations

Author:

Gahlawat SonalORCID,Nanda VikasORCID,Shreiber David I.ORCID

Abstract

Streptococcus pyogenes-derived recombinant bacterial collagen-like proteins (CLPs) are emerging as a potential biomaterial for biomedical research and applications. Bacterial CLPs form stable triple helices and lack specific interactions with human cell surface receptors, thus enabling the design of novel biomaterials with specific functional attributes. Bacterial collagens have been instrumental in understanding collagen structure and function in normal and pathological conditions. These proteins can be readily produced in E. coli, purified using affinity chromatography, and subsequently isolated after cleavage of the affinity tag. Trypsin is a widely used protease during this purification step since the triple helix structure is resistant to trypsin digestion. However, the introduction of Gly→X mutations or natural interruptions within CLPs can perturb the triple helix structure, making them susceptible to trypsin digestion. Consequently, removing the affinity tag and isolating collagen-like (CL) domains containing mutations is impossible without degradation of the product. We present an alternative method to isolate CL domains containing Gly→X mutations utilizing a TEV protease cleavage site. Protein expression and purification conditions were optimized for designed protein constructs to achieve high yield and purity. Enzymatic digestion assays demonstrated that CL domains from wild-type CLPs could be isolated by digestion with either trypsin or TEV protease. In contrast, CLPs containing Gly→Arg mutations are readily digested by trypsin while digestion with TEV protease cleaved the His6-tag, enabling the isolation of mutant CL domains. The developed method can be adapted to CLPs containing various new biological sequences to develop multifunctional biomaterials for tissue engineering applications.

Funder

New Jersey Health Foundation

Marfan Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3