Abstract
In this study, zinc-oxide (ZnO) nanoparticles (NPs) doped with cobalt (Co) were synthesized using a simple coprecipitation technique. The concentration of Co was varied to investigate its effect on the structural, morphological, optical, and dielectric properties of the NPs. X-ray diffraction (XRD) analysis confirmed the hexagonal wurtzite structure of both undoped and Co-doped ZnO-NPs. Scanning electron microscopy (SEM) was used to examine the morphology of the synthesized NPs, while energy-dispersive X-ray spectroscopy (EDX) was used to verify their purity. The band gap of the NPs was evaluated using UV-visible spectroscopy, which revealed a decrease in the energy gap as the concentration of Co2+ increased in the ZnO matrix. The dielectric constants and AC conductivity of the NPs were measured using an LCR meter. The dielectric constant of the Co-doped ZnO-NPs continuously increased from 4.0 × 10−9 to 2.25 × 10−8, while the dielectric loss decreased from 4.0 × 10−8 to 1.7 × 10−7 as the Co content increased from 0.01 to 0.07%. The a.c. conductivity also increased with increasing applied frequency. The findings suggest that the synthesized Co-doped ZnO-NPs possess enhanced dielectric properties and reduced energy gap, making them promising candidates for low-frequency devices such as UV photodetectors, optoelectronics, and spintronics applications. The use of a cost-effective and scalable synthesis method, coupled with detailed material characterization, makes this work significant in the field of nanomaterials and device engineering.
Funder
Deanship of Scientific Research at Umm Al Qura University
Publisher
Public Library of Science (PLoS)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献