Moving beyond MARCO

Author:

Rosa Nicholas,Watkins Christopher J.,Newman JanetORCID

Abstract

The use of imaging systems in protein crystallisation means that the experimental setups no longer require manual inspection to determine the outcome of the trials. However, it leads to the problem of how best to find images which contain useful information about the crystallisation experiments. The adoption of a deeplearning approach in 2018 enabled a four-class machine classification system of the images to exceed human accuracy for the first time. Underpinning this was the creation of a labelled training set which came from a consortium of several different laboratories. The MARCO classification model does not have the same accuracy on local data as it does on images from the original test set; this can be somewhat mitigated by retraining the ML model and including local images. We have characterized the image data used in the original MARCO model, and performed extensive experiments to identify training settings most likely to enhance the local performance of a MARCO-dataset based ML classification model.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference47 articles.

1. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy;SK Burley;Nucleic Acids Research,2019

2. Identifying, studying and making good use of macromolecular crystals;G Calero;Acta Crystallographica Section F,2014

3. X-ray Crystallography: One Century of Nobel Prizes;S Galli;Journal of Chemical Education,2014

4. Structural biology in the fight against COVID-19;M Bárcena;Nature Structural & Molecular Biology,2021

5. Structural biology in the time of COVID-19: perspectives on methods and milestones;ML Lynch;IUCrJ,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3