Imputation of missing values for cochlear implant candidate audiometric data and potential applications

Author:

Pavelchek ColeORCID,Michelson Andrew P.ORCID,Walia Amit,Ortmann Amanda,Herzog Jacques,Buchman Craig A.,Shew Matthew A.ORCID

Abstract

Objective Assess the real-world performance of popular imputation algorithms on cochlear implant (CI) candidate audiometric data. Methods 7,451 audiograms from patients undergoing CI candidacy evaluation were pooled from 32 institutions with complete case analysis yielding 1,304 audiograms. Imputation model performance was assessed with nested cross-validation on randomly generated sparse datasets with various amounts of missing data, distributions of sparsity, and dataset sizes. A threshold for safe imputation was defined as root mean square error (RMSE) <10dB. Models included univariate imputation, interpolation, multiple imputation by chained equations (MICE), k-nearest neighbors, gradient boosted trees, and neural networks. Results Greater quantities of missing data were associated with worse performance. Sparsity in audiometric data is not uniformly distributed, as inter-octave frequencies are less commonly tested. With 3–8 missing features per instance, a real-world sparsity distribution was associated with significantly better performance compared to other sparsity distributions (Δ RMSE 0.3 dB– 5.8 dB, non-overlapping 99% confidence intervals). With a real-world sparsity distribution, models were able to safely impute up to 6 missing datapoints in an 11-frequency audiogram. MICE consistently outperformed other models across all metrics and sparsity distributions (p < 0.01, Wilcoxon rank sum test). With sparsity capped at 6 missing features per audiogram but otherwise equivalent to the raw dataset, MICE imputed with RMSE of 7.83 dB [95% CI 7.81–7.86]. Imputing up to 6 missing features captures 99.3% of the audiograms in our dataset, allowing for a 5.7-fold increase in dataset size (1,304 to 7,399 audiograms) as compared with complete case analysis. Conclusion Precision medicine will inevitably play an integral role in the future of hearing healthcare. These methods are data dependent, and rigorously validated imputation models are a key tool for maximizing datasets. Using the largest CI audiogram dataset to-date, we demonstrate that in a real-world scenario MICE can safely impute missing data for the vast majority (>99%) of audiograms with RMSE well below a clinically significant threshold of 10dB. Evaluation across a range of dataset sizes and sparsity distributions suggests a high degree of generalizability to future applications.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3