Dermokine mutations contribute to epithelial-mesenchymal transition and advanced melanoma through ERK/MAPK pathways

Author:

Ma Wenqiong,Wu Zexiu,Maghsoudloo Mazaher,Ijaz Iqra,Dehghan Shasaltaneh Marzieh,Zhang Yuqin,Weng Qiao,Fu Junjiang,Imani SaberORCID,Wen Qing Lian

Abstract

To discover vulnerabilities associated with dermokine (DMKN) as a new trigger of the epithelial-mesenchymal transition (EMT) -driven melanoma, we undertook a genome-wide genetic screening using transgenic. Here, we showed that DMKN expression could be constitutively increased in human malignant melanoma (MM) and that this correlates with poor overall survival in melanoma patients, especially in BRAF-mutated MM samples. Furthermore, in vitro, knockdown of DMKN inhibited the cell proliferation, migration, invasion, and apoptosis of MM cancer cells by the activation of ERK/MAPK signaling pathways and regulator of STAT3 in downstream molecular. By interrogating the in vitro melanoma dataset and characterization of advanced melanoma samples, we found that DMKN downregulated the EMT-like transcriptional program by disrupting EMT cortical actin, increasing the expression of epithelial markers, and decreasing the expression of mesenchymal markers. In addition, whole exome sequencing was presented with p.E69D and p.V91A DMKN mutations as a novel somatic loss of function mutations in those patients. Moreover, our purposeful proof-of-principle modeled the interaction of ERK with p.E69D and p.V91A DMKN mutations in the ERK-MAPK kinas signaling that may be naturally associated with triggering the EMT during melanomagenesis. Altogether, these findings provide preclinical evidence for the role of DMKN in shaping the EMT-like melanoma phenotype and introduced DMKN as a new exceptional responder for personalized MM therapy.

Funder

Science Technology Innovation Cultivation Seedling Project and Small Invention and Small Creation Project of Sichuan Province, China, 2022

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3