Food anaphylaxis diagnostic marker compilation in machine learning design and validation

Author:

Randhawa Inderpal S.ORCID,Groshenkov Kirill,Sigalov Grigori

Abstract

Background Traditional food allergy assessment of anaphylaxis remains limited in accuracy and accessibility. Current methods of anaphylaxis risk assessment are costly with low predictive accuracy. The Tolerance Induction Program (TIP) for anaphylactic patients undergoing TIP immunotherapy produced large-scale diagnostic data across biosimilar proteins, which was used to develop a machine learning model for patient-specific and allergen-specific anaphylaxis assessment. In explanation of construct, this work describes the algorithm design for assignment of peanut allergen score as a quantitative measure of anaphylaxis risk. Secondarily, it confirms the accuracy of the machine learning model for a specific cohort of food anaphylactic children. Methods and results Machine learning model design for allergen score prediction utilized 241 individual allergy assays per patient. Accumulation of data across total IgE subdivision served as the basis of data organization. Two regression based Generalized Linear Models (GLM) were utilized to position allergy assessment on a linear scale. The initial model was further tested with sequential patient data over time. A Bayesian method was then used to improve outcomes by calculating the adaptive weights for the results of the two GLMs of peanut allergy score prediction. A linear combination of both provided the final hybrid machine learning prediction algorithm. Specific analysis of peanut anaphylaxis within one endotype model is estimated to predict the severity of possible anaphylactic reaction to peanut with a recall of 95.2% on a dataset of 530 juvenile patients with various food allergies, including but not limited to peanut allergy. Receiver Operating Characteristic analysis yielded over 99% AUC (area under curve) results within peanut allergy prediction. Conclusions Machine learning algorithm design established from comprehensive molecular allergy data produces high accuracy and recall in anaphylaxis risk assessment. Subsequent design of additional food protein anaphylaxis algorithms is needed to improve the precision and efficiency of clinical food allergy assessment and immunotherapy treatment.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference9 articles.

1. Estimating the Risk of Severe Peanut Allergy Using Clinical Background and IgE Sensitization Profiles;M Datema;Frontiers in Allergy,2021

2. The Public Health Impact of Parent-Reported Childhood Food Allergies in the United States;RS Gupta;Pediatrics,2018

3. The economic impact of childhood food allergy in the United States;R Gupta;JAMA Pediatrics,2013

4. Food allergy: is prevalence increasing?;ML Tang;Internal Medicine J,2017

5. The diagnosis of food allergy: a systematic review and meta-analysis;EAACI Food Allergy and Anaphylaxis Guidelines Group;Allergy,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3