Exploring functional and structural features of chemically related natural prenylated hydroquinone and benzoic acid from Piper crassinervium (Piperaceae) on bacterial peroxiredoxin inhibition

Author:

Montanhero Cabrera Vitoria Isabela,do Nascimento Sividanes Gabrielle,Quintiliano Natalia Fernanda,Hikari Toyama Marcos,Ghilardi Lago João Henrique,de Oliveira Marcos AntonioORCID

Abstract

Multiple drug resistance (MDR) bacterial strains are responsible by 1.2 million of human deaths all over the world. The pathogens possess efficient enzymes which are able to mitigate the toxicity of reactive oxygen species (ROS) produced by some antibiotics and the host immune cells. Among them, the bacterial peroxiredoxin alkyl hydroperoxide reductase C (AhpC) is able to decompose efficiently several kinds of hydroperoxides. To decompose their substrates AhpC use a reactive cysteine residue (peroxidatic cysteine—CysP) that together with two other polar residues (Thr/Ser and Arg) comprise the catalytic triad of these enzymes and are involved in the substrate targeting/stabilization to allow a bimolecular nucleophilic substitution (SN2) reaction. Additionally to the high efficiency the AhpC is very abundant in the cells and present virulent properties in some bacterial species. Despite the importance of AhpC in bacteria, few studies aimed at using natural compounds as inhibitors of this class of enzymes. Some natural products were identified as human isoforms, presenting as common characteristics a bulk hydrophobic moiety and an α, β-unsaturated carbonylic system able to perform a thiol-Michael reaction. In this work, we evaluated two chemically related natural products: 1,4-dihydroxy-2-(3’,7’-dimethyl-1’-oxo-2’E,6’-octadienyl) benzene (C1) and 4-hydroxy-2-(3’,7’-dimethyl-1’-oxo-2’E,6’-octadienyl) benzoic acid (C2), both were isolated from branchesPiper crassinervium(Piperaceae), over the peroxidase activity of AhpC fromPseudomonas aeruginosa(PaAhpC) andStaphylococcus epidermidis(SeAhpC). By biochemical assays we show that although both compounds can perform the Michael addition reaction, only compoundC2was able to inhibit the PaAhpC peroxidase activity but not SeAhpC, presenting IC50= 20.3 μM. SDS-PAGE analysis revealed that the compound was not able to perform a thiol-Michael addition, suggesting another inhibition behavior. Using computer-assisted simulations, we also show that an acidic group present in the structure of compoundC2may be involved in the stabilization by polar interactions with the Thr and Arg residues from the catalytic triad and several apolar interactions with hydrophobic residues. Finally,C2was not able to interfere in the peroxidase activity of the isoform Prx2 from humans or even the thiol proteins of the Trx reducing system fromEscherichia coli(EcTrx and EcTrxR), indicating specificity forP.aeruginosaAhpC.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The multifaceted nature of peroxiredoxins in chemical biology;Current Opinion in Chemical Biology;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3