Abstract
Freshwater sources, often used for domestic and agricultural purposes in low- and middle-income countries are repositories of clinically significant bacterial pathogens. These pathogens are usually diversified in their antibiogram profiles posing public health threats. This study evaluated the spatial diarrhoeal disease risk and antibiogram diversity of diarrheagenic Escherichia coli (DEC) in four access points of the Buffalo River, Eastern Cape Province, South Africa using standard epidemiological, culture, and molecular methods. The diarrhoeal disease risk was characterised using the Monte Carlo simulation, while the antibiogram diversity was assessed using the species observed Whittaker’s single alpha-diversity modelling. E. coli mean count was highest in King William’s Town dam [16.0 × 102 CFU/100ml (SD: 100.0, 95% CI: 13.5 × 102 to 18.5 × 102)]. Enterohemorrhagic E. coli (stx1/stx2) was the most prevalent DEC pathotype across the study sites. A high diarrhoeal disease risk of 25.0 ×10−2 exceeding the World Health Organization’s standard was recorded across the study sites. The average single and multiple antimicrobial resistance indices of the DEC to test antimicrobials were highest in the Eluxolzweni dam [0.52 (SD: 0.25, 95% CI: 0.37 to 0.67)] and King William’s Town dam [0.42 (SD: 0.25, 95% CI: 0.27 to 0.57)] respectively. The prevalent antibiotic resistance genes detected were tetA, blaFOX and blaMOX plasmid-mediated AmpC, blaTEM and blaSHV extended-spectrum β-lactamases, which co-occurred across the study sites on network analysis. The phenotypic and genotypic resistance characteristics of the DEC in Maden dam (r = 0.93, p<0.00), Rooikrantz dam (r = 0.91, p<0.00), King William’s Town dam (r = 0.83, p = 0.0), and Eluxolzweni dam (r = 0.91, p<0.00) were strongly correlated. At least, three phylogenetic clades of the DEC with initial steep descent alpha-diversity curves for most of the test antimicrobials were observed across the study sites, indicating high diversity. The occurrence of diversified multi drug resistant DEC with diarrhoeal disease risks in the Buffalo River substantiates the role surface water bodies play in the dissemination of drug-resistant bacterial pathogens with public health implications.
Funder
South African Medical Research Council
Publisher
Public Library of Science (PLoS)
Reference57 articles.
1. Global burden of childhood pneumonia and diarrhoea;FCL Walker;Lancet,2013
2. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016;C Troeger;Lancet Infect Dis,2018
3. Environmental factors of diarrhea prevalence among under five children in rural area of North Gondar zone;A Getachew;Ethiopia. Ital J Pediatr,2018
4. Perched wetlands: An explanation to wetland formation in semi-arid areas;BL Melly;J Arid Environ,2017
5. Prevalence of enteropathogenic bacteria in treated effl uents and receiving water bodies and their potential health risks;GZ Teklehaimanot;Sci Total Environ,2015
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献