Time series forecasting of COVID-19 infections and deaths in Alpha and Delta variants using LSTM networks

Author:

Sheikhi FarnazORCID,Kowsari Zahra

Abstract

Since the beginning of the rapidly spreading COVID-19 pandemic, several mutations have occurred in the genetic sequence of the virus, resulting in emerging different variants of concern. These variants vary in transmissibility, severity of infections, and mortality rate. Designing models that are capable of predicting the future behavior of these variants in the societies can help decision makers and the healthcare system to design efficient health policies, and to be prepared with the sufficient medical devices and an adequate number of personnel to fight against this virus and the similar ones. Among variants of COVID-19, Alpha and Delta variants differ noticeably in the virus structures. In this paper, we study these variants in the geographical regions with different size, population densities, and social life styles. These regions include the country of Iran, the continent of Asia, and the whole world. We propose four deep learning models based on Long Short-Term Memory (LSTM), and examine their predictive power in forecasting the number of infections and deaths for the next three, next five, and next seven days in each variant. These models include Encoder Decoder LSTM (ED-LSTM), Bidirectional LSTM (Bi-LSTM), Convolutional LSTM (Conv-LSTM), and Gated Recurrent Unit (GRU). Performance of these models in predictions are evaluated using the root mean square error, mean absolute error, and mean absolute percentage error. Then, the Friedman test is applied to find the leading model for predictions in all conditions. The results show that ED-LSTM is generally the leading model for predicting the number of infections and deaths for both variants of Alpha and Delta, with the ability to forecast long time intervals ahead.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference47 articles.

1. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

2. Strategies for the prevention and management of coronavirus disease 2019;WJ Guan;European Respiratory Journal,2020

3. Sheikhi F, Alipour S. A geometric algorithm for fault-tolerant classification of COVID-19 Infected People. In: 2021 26th International Computer Conference, Computer Society of Iran (CSICC); 2021. p. 1–5.

4. https://www.who.int/westernpacific/emergencies/covid-19/information/covid-19-variants.

5. Complexity of the basic reproduction number (R0);P Delamater;Emerging Infectious Diseases,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3