Analysis of top box office film poster marketing scheme based on data mining and deep learning in the context of film marketing

Author:

Yang ShuyuanORCID

Abstract

With the development of science and technology and the continuous changes of social environment, the development prospect of traditional cinema is worrying. This work aims to improve the publicity effect of movie posters and optimize the marketing efficiency of movie posters and promote the development of film and television industry. First, the design concept of high grossing movie posters is discussed. Then, the concept of movie poster analysis based on Deep Learning (DL) technology is analyzed under Big Data Technology. Finally, a movie poster analysis model is designed based on Convolutional Neural Network (CNN) technology under DL and is evaluated. The results demonstrate that the learning curve of the CNN model reported here is the best in the evaluation of model performance in movie poster analysis. Besides, the learning rate of the model is basically stable when the number of iterations is about 500. The final loss value is around 0.5. Meanwhile, the accuracy rate of the model is also stable at the number of iterations of about 500, and the accuracy rate of the model is around 0.9. In addition, the recognition accuracy of the model designed here in movie poster classification recognition is generally between 60% and 85% in performing theme, style, composition, color scheme, set, and product recognition of movie posters. Moreover, the evaluation of the model in the movie poster style composition suggests that the style composition of movie poster production dramatically varies in different films, in which movie posters focus most on movie product, style, and theme. Compared with other models, the performance of this model is more outstanding in all aspects, which shows that this work has achieved a great technical breakthrough. This work provides a reference for the optimization of the design method of movie posters and contributes to the development of the movie industry.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Multi-label movie genre detection from a movie poster using knowledge transfer learning.;K Kundalia;Augmented Human Research,2020

2. Understanding movie poster: Transfer-deep learning approach for graphics-rich text recognition;M Ghosh;The Visual Computer,2022

3. An updated survey of efficient hardware architectures for accelerating deep convolutional neural networks;M Capra;Future Internet,2020

4. The Interactive Meaning of a Movie Poster: a Multimodality of Spiderman: No Way Home.;P Dewi S;JSSH (Jurnal Sains Sosial dan Humaniora),2022

5. Prediction of individual preference for movie poster designs based on graphic elements using machine learning classification.;J Suk H;Electronic Imaging,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3