Racial and ethnic disparities in workers’ compensation claims rates

Author:

Smith Caroline K.ORCID,Wuellner Sara,Marcum Jennifer

Abstract

Background Workers of color experience a disproportionate share of work-related injuries and illnesses (WRII), however, most workers’ compensation systems do not collect race and ethnicity information, making it difficult to monitor trends over time, or to investigate specific policies and procedures that maintain or could eliminate the unequal burden of WRII for workers of color. The purpose of this study is to apply a Bayesian method to Washington workers’ compensation claims data to identify racial and ethnic disparities of WRII by industry and occupation, improving upon existing surveillance limitations. Measuring differences in risk for WRII will better inform prevention efforts and target prevention to those at increased risk. Methods To estimate WRII by race/ethnicity, we applied the Bayesian Improved Surname Geocode (BISG) method to surname and residential address data among all Washington workers’ compensation claims filed for injuries in 2013–2017. We then compare worker and injury characteristics by imputed race/ethnicity, and estimate rates of WRII by imputed race/ethnicity within industry and occupation. Results Black/African Americans had the highest rates of WRII claims across all industry and occupational sectors. Hispanic/Latino WRII claimants also had higher rates than Whites and Asian/Pacific Islanders in almost all industry and occupational sectors. For accepted claims with both medical and non-medical compensation, Bodily reaction/overexertion injuries accounted for almost half of the claims during this reporting period. Discussion The high rates of injury we report by racial/ethnic categories is a cause for major concern. Nearly all industry and occupation-specific rates of workers’ compensation claims are higher for Black/African American and Hispanic/Latino workers compared to Whites. More work is needed to identify work-related, systemic, and individual characteristics.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3