A transition point: Assistance magnitude is a critical parameter when providing assistance during walking with an energy-removing exoskeleton or biomechanical energy harvester

Author:

Shepertycky MichaelORCID,Liu Yan-Fei,Li Qingguo

Abstract

Researchers and engineers have developed exoskeletons capable of reducing the energetic cost of walking by decreasing the force their users’ muscles are required to produce while contracting. The metabolic effect of assisting concentric and isometric muscle contractions depends, in part, on assistance magnitude. We conducted human treadmill experiments to explore the effects of assistance magnitude on the biomechanics and energetics of walking with an energy-removing exoskeleton designed to assist eccentric muscle contractions. Our results demonstrate that the assistance magnitude of an energy-removing device significantly affects the energetics, muscle activity, and biomechanics of walking. Under the moderate assistance magnitude condition, our device reduced the metabolic cost of walking below that of normal walking by 3.4% while simultaneously producing 0.29 W of electricity. This reduction in the energetic cost of walking was also associated with an 8.9% decrease in hamstring activity. Furthermore, we determined that there is an assistance magnitude threshold that, when crossed, results in the device transitioning from assisting to hindering its user. This transition is marked by significant increases in muscle activity and the metabolic cost of walking. These results could aid in the future design of exoskeletons and biomechanical energy harvesters, as well as adaptive control systems, that identify user-specific control parameters associated with minimum energy expenditure.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference54 articles.

1. Physical activity and human energy expenditure;KR Westerterp;Curr Opin Clin Nutr Metab Care,2004

2. Physical activity and physical activity induced energy expenditure in humans: measurement, determinants, and effects;KR Westerterp;Front Physiol,2013

3. Energetics of running: a new perspective;R Kram;Nature,1990

4. Mechanics and energetics of walking and running up and downhill: A joint-level perspective to guide design of lower-limb exoskeletons;RW Nuckols;PloS one,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3