Correlating continuously captured home-based digital biomarkers of daily function with postmortem neurodegenerative neuropathology

Author:

Hantke Nathan C.ORCID,Kaye Jeffrey,Mattek Nora,Wu Chao-Yi,Dodge Hiroko H.,Beattie Zachary,Woltjer Randy

Abstract

Background Outcome measures available for use in Alzheimer’s disease (AD) clinical trials are limited in ability to detect gradual changes. Measures of everyday function and cognition assessed unobtrusively at home using embedded sensing and computing generated “digital biomarkers” (DBs) have been shown to be ecologically valid and to improve efficiency of clinical trials. However, DBs have not been assessed for their relationship to AD neuropathology. Objectives The goal of the current study is to perform an exploratory examination of possible associations between DBs and AD neuropathology in an initially cognitively intact community-based cohort. Methods Participants included in this study were ≥65 years of age, living independently, of average health for age, and followed until death. Algorithms, run on the continuously-collected passive sensor data, generated daily metrics for each DB: cognitive function, mobility, socialization, and sleep. Fixed postmortem brains were evaluated for neurofibrillary tangles (NFTs) and neuritic plaque (NP) pathology and staged by Braak and CERAD systems in the context of the “ABC” assessment of AD-associated changes. Results The analysis included a total of 41 participants (M±SD age at death = 92.2±5.1 years). The four DBs showed consistent patterns relative to both Braak stage and NP score severity. Greater NP severity was correlated with the DB composite and reduced walking speed. Braak stage was associated with reduced computer use time and increased total time in bed. Discussion This study provides the first data showing correlations between DBs and neuropathological markers in an aging cohort. The findings suggest continuous, home-based DBs may hold potential to serve as behavioral proxies that index neurodegenerative processes.

Funder

National Institute on Aging

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3