Wearable derived cardiovascular responses to stressors in free-living conditions

Author:

Presby David M.ORCID,Jasinski Summer R.,Capodilupo Emily R.

Abstract

Stress contributes to the progression of many diseases. Despite stress’ contribution towards disease, few methods for continuously measuring stress exist. We investigated if continuously measured cardiovascular signals from a wearable device can be used as markers of stress. Using wearable technology (WHOOP Inc, Boston, MA) that continuously measures and calculates heart rate (HR) and heart rate variability (root-mean-square of successive differences; HRV), we assessed duration and magnitude of deviations in HR and HRV around the time of a run (from 23665 runs) or high-stress work (from 8928 high-stress work events) in free-living conditions. HR and HRV were assessed only when participants were motionless (HRmotionless). Runs were grouped into light, moderate, and vigorous runs to determine dose response relationships. When examining HRmotionless and HRV throughout the day, we found that these metrics display circadian rhythms; therefore, we normalized HRmotionless and HRV measures for each participant relative to the time of day. Relative to the period within 30 minutes leading up to a run, HRmotionless is elevated for up to 180–210 minutes following a moderate or vigorous run (P<0.05) and is unchanged or reduced following a light run. HRV is reduced for at least 300 minutes following a moderate or vigorous run (P<0.05) and is unchanged during a light run. Relative to the period within 30 minutes leading up to high-stress work, HRmotionless is elevated during and for up to 30 minutes following high-stress work. HRV tends to be lower during high-stress work (P = 0.06) and is significantly lower 90–300 minutes after the end of the activity (P<0.05). These results demonstrate that wearables can quantify stressful events, which may be used to provide feedback to help individuals manage stress.

Funder

WHOOP Inc.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3