Ensemble learning approach for advanced metering infrastructure in future smart grids

Author:

Irfan MuhammadORCID,Ayub NasirORCID,Althobiani Faisal,Masood Sabeen,Arbab Ahmed QaziORCID,Saeed Muhammad Hamza,Rahman Saifur,Abdushkour Hesham,Gommosani Mohammad E.,Shamji V. R.,Faraj Mursal Salim Nasar

Abstract

Typically, load forecasting models are trained in an offline setting and then used to generate predictions in an online setting. However, this approach, known as batch learning, is limited in its ability to integrate new load information that becomes available in real-time. On the other hand, online learning methods enable load forecasting models to adapt efficiently to new incoming data. Electricity Load and Price Forecasting (ELPF) is critical to maintaining energy grid stability in smart grids. Existing forecasting methods cannot handle the available large amount of data, which are limited by different issues like non-linearity, un-adjusted high variance and high dimensions. A compact and improved algorithm is needed to synchronize with the diverse procedure in ELPF. Our model ELPF framework comprises high/low consumer data separation, handling missing and unstandardized data and preprocessing method, which includes selecting relevant features and removing redundant features. Finally, it implements the ELPF using an improved method Residual Network (ResNet-152) and the machine-improved Support Vector Machine (SVM) based forecasting engine to forecast the ELP accurately. We proposed two main distinct mechanisms, regularization, base learner selection and hyperparameter tuning, to improve the performance of the existing version of ResNet-152 and SVM. Furthermore, it reduces the time complexity and the overfitting model issue to handle more complex consumer data. Furthermore, numerous structures of ResNet-152 and SVM are also explored to improve the regularization function, base learners and compatible selection of the parameter values with respect to fitting capabilities for the final forecasting. Simulated results from the real-world load and price data confirm that the proposed method outperforms 8% of the existing schemes in performance measures and can also be used in industry-based applications.

Funder

Deanship of Scientific Research, Najran University

National Research Priorities and Najran Area funding program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3