Predicting activatory and inhibitory drug–target interactions based on structural compound representations and genetically perturbed transcriptomes

Author:

Lee Won-Yung,Lee Choong-YeolORCID,Kim Chang-EopORCID

Abstract

A computational approach to identifying drug–target interactions (DTIs) is a credible strategy for accelerating drug development and understanding the mechanisms of action of small molecules. However, current methods to predict DTIs have mainly focused on identifying simple interactions, requiring further experiments to understand mechanism of drug. Here, we propose AI-DTI, a novel method that predicts activatory and inhibitory DTIs by combining the mol2vec and genetically perturbed transcriptomes. We trained the model on large-scale DTIs with MoA and found that our model outperformed a previous model that predicted activatory and inhibitory DTIs. Data augmentation of target feature vectors enabled the model to predict DTIs for a wide druggable targets. Our method achieved substantial performance in an independent dataset where the target was unseen in the training set and a high-throughput screening dataset where positive and negative samples were explicitly defined. Also, our method successfully rediscovered approximately half of the DTIs for drugs used in the treatment of COVID-19. These results indicate that AI-DTI is a practically useful tool for guiding drug discovery processes and generating plausible hypotheses that can reveal unknown mechanisms of drug action.

Funder

Korea Health Industry Development Institute

National Research Foundation of Korea

Ministry of Food and Drug Safety in 2021

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference33 articles.

1. Principles of early drug discovery;JP Hughes;Br J Pharmacol,2011

2. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach;IM Kapetanovic;Chem Biol Interact,2008

3. Computer Aided Drug Design: Success and Limitations;M Hassan Baig;Curr Pharm Des,2016

4. The methodological trends of traditional herbal medicine employing network pharmacology;WY Lee;Biomolecules,2019

5. In silico polypharmacology of natural products;J Fang;Brief Bioinform,2017

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3