Risk assessment of debris flow disaster based on the cloud model—Probability fusion method

Author:

Li LiORCID,Ni Bo,Qiang Yue,Zhang Shixin,Zhao Dongsheng,Zhou Ling

Abstract

This paper proposes a new debris flow risk assessment method based on the Monte Carlo Simulation and an Improved Cloud Model. The new method tests the consistency of coupling weights according to the characteristics of the Cloud Model firstly, so as to determine the weight boundary of each evaluation index. Considering the uncertain characteristics of weights, the Monte Carlo Simulation is used to converge the weights in a minimal fuzzy interval, then the final weight value of each evaluation index is obtained. Finally, a hierarchical comprehensive cloud is established by the Improving Cloud Model, which is used to input the comprehensive expectation composed of weights to obtain the risk level of debris flow. Through statistical analysis, this paper selects Debris flow scale (X1), Basin area (X2), Drainage density (X3), Basin relative relief (X4), Main channel length (X5), Maximum rainfall (X6) as evaluation indexes. A total of 20 debris flow gullies were selected as study cases (8 debris flow gullies as model test, 12 debris flow gullies in reservoir area as example study). The comparison of the final evaluation results with those of other methods shows that the method proposed in this paper is a more reliable evaluation method for debris flow prevention and control.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference45 articles.

1. Debris-flow hazard assessments: a practitioner’s view. Environmental &;M. Jakob;Engineering Geoscience,2021

2. Comprehensive evaluation model of debris flow risk in hydropower projects;H. Su;Water resources management,2016

3. Study on risk assessment of debris flow in valleys [J];Liu Xilin;Journal of Soil and Water Conservation, (02):20–25. (in Chinese),1993

4. Debris flow risk assessment based on the undetermined measure theory based on AHP [J];Liu Hai;Resource and Environment in the Yangtze River Basin,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3