Outer membrane protein N expressed in Gram-negative bacterial strain of Escherichia coli BL21 (DE3) Omp8 Rosetta strains under osmoregulation by salts, sugars, and pHs

Author:

Chumjan WatcharinORCID,Sangchalee Akira,Somwang Cholthicha,Mookda Nattida,Yaikeaw Sriwannee,Somsakeesit La-orORCID

Abstract

This study presented the expression of the outer membrane protein N in E. coli BL21 (DE3) Omp8 Rosetta under its growth condition and by osmoregulation. The effects of osmotic stress caused by salts, sugars, or pH values on the survival of the target Gram-negative bacterial strain of E. coli BL21 (DE3) Omp8 Rosetta and OmpN expression remain unknown. Here, tryptone yeast extract with varied salts and concentrations was initially used to generate an LB broth medium. To show how salts and concentration affect bacterial growth, the optical density at 600 nm was measured. The findings supported the hypothesis that salts and concentrations control bacterial growth. Moreover, a Western blotting study revealed that OmpN overexpression was present in all tested salts after stimulation with both glucose and fructose after being treated individually with anti-OmpN and anti-histidine tag polyclonal antibodies on transferred nitrocellulose membrane containing crude OmpN. Following the presence of the plasmid pET21b(+)/ompN-BOR into E. coli BL21 (DE3) Omp8 Rosetta, which was expressed in the recombinant OmpN protein (BOR), OmpN expression was demonstrated for all monovalent cations as well as MgCl2. All of the tested salts, except for BaCl2, NaH2PO4, and KH2PO4, showed overexpression of recombinant BOR after Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. Using CH3COONa, both with and without IPTG induction, there was very little bacterial growth and no OmpN expression. With NaCl, a pH value of 7 was suitable for bacterial development, whereas KCl required a pH value of 8. According to this research, bacterial growth in addition to salts, sugars, and pH values influences how the OmpN protein is produced.

Funder

Rajamangala University of Technology Isan

Thailand Science Research and Innovation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Effect of pH and sodium chloride on growth of Bacillus cereus in laboratory media and certain foods.;M Raevuori;Appl Microbiol.,1975

2. Methods: Optimization of culture medium for production of recombinant dengue protein in Escherichia coli.;NK Tripathi;Ind Biotechnol,2009

3. Effects of NaCl concentration and initial pH value on biogenic amine formation dynamics by Enterobacter spp. bacteria in model conditions;G Greif;J Food Nutr Res,2006

4. Impact of salt and nutrient content on biofilm formation by Vibrio fischeri.;AE Marsden;PLoS ONE.,2017

5. Predictive modelling of growth of Escherichia coli O157: H7: the effects of temperature, pH and sodium chloride;JP Sutherland;Int J Food Microbiol,1995

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3