Temporal analysis of academic performance in higher education before, during and after COVID-19 confinement using artificial intelligence

Author:

Subirats LaiaORCID,Palacios Corral Aina,Pérez-Ruiz Sof´ıa,Fort Santi,Sacha Go´mez-Mon˜ivasORCID

Abstract

This study provides the profiles and success predictions of students considering data before, during, and after the COVID-19 pandemic. Using a field experiment of 396 students and more than 7400 instances, we have analyzed students’ performance considering the temporal distribution of autonomous learning during courses from 2016/2017 to 2020/2021. After applying unsupervised learning, results show 3 main profiles from the clusters obtained in the simulations: students who work continuously, those who do it in the last-minute, and those with a low performance in the whole autonomous learning. We have found that the highest success ratio is related to students that work in a continuous basis. However, last-minute working is not necessarily linked to failure. We have also found that students’ marks can be predicted successfully taking into account the whole data sets. However, predictions are worse when removing data from the month before the final exam. These predictions are useful to prevent students’ wrong learning strategies, and to detect malpractices such as copying. We have done all these analyses taking into account the effect of the COVID-19 pandemic, founding that students worked in a more continuous basis in the confinement. This effect was still present one year after. Finally, We have also included an analysis of the techniques that could be more effective to keep in a future non-pandemic scenario the good habits that were detected in the confinement.

Funder

ACCIO

Fondo SuperaCOVID19

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. Data mining in education.;C Romero;Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,2013

2. Mining theory-based patterns from Big data: Identifying self-regulated learning strategies in Massive Open Online Courses.;P Maldonado-Mahauad J;Computers in Human Behavior.,2018

3. Investigating variation in learning processes in a FutureLearn MOOC;S Rizvi;Journal of computing in higher education,2020

4. The MOOC model for digital practice.;A McAuley;Knowledge Synthesis for the Digital Economy.,2010

5. Assessment of collaborative learning experiences by graphical analysis of wiki contributions.;M Palomo-Duarte;Interactive Learning Environments.,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3