Prediction of lymphoma response to CAR T cells by deep learning-based image analysis

Author:

Tong YubingORCID,Udupa Jayaram K.ORCID,Chong Emeline,Winchell Nicole,Sun Changjian,Zou YongningORCID,Schuster Stephen J.,Torigian Drew A.

Abstract

Clinical prognostic scoring systems have limited utility for predicting treatment outcomes in lymphomas. We therefore tested the feasibility of a deep-learning (DL)-based image analysis methodology on pre-treatment diagnostic computed tomography (dCT), low-dose CT (lCT), and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) images and rule-based reasoning to predict treatment response to chimeric antigen receptor (CAR) T-cell therapy in B-cell lymphomas. Pre-treatment images of 770 lymph node lesions from 39 adult patients with B-cell lymphomas treated with CD19-directed CAR T-cells were analyzed. Transfer learning using a pre-trained neural network model, then retrained for a specific task, was used to predict lesion-level treatment responses from separate dCT, lCT, and FDG-PET images. Patient-level response analysis was performed by applying rule-based reasoning to lesion-level prediction results. Patient-level response prediction was also compared to prediction based on the international prognostic index (IPI) for diffuse large B-cell lymphoma. The average accuracy of lesion-level response prediction based on single whole dCT slice-based input was 0.82+0.05 with sensitivity 0.87+0.07, specificity 0.77+0.12, and AUC 0.91+0.03. Patient-level response prediction from dCT, using the “Majority 60%” rule, had accuracy 0.81, sensitivity 0.75, and specificity 0.88 using 12-month post-treatment patient response as the reference standard and outperformed response prediction based on IPI risk factors (accuracy 0.54, sensitivity 0.38, and specificity 0.61 (p = 0.046)). Prediction of treatment outcome in B-cell lymphomas from pre-treatment medical images using DL-based image analysis and rule-based reasoning is feasible. This approach can potentially provide clinically useful prognostic information for decision-making in advance of initiating CAR T-cell therapy.

Funder

National Cancer Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3