Abstract
CD4+ T-helper 17 (Th17) T cells are a key population in protective immunity during infection and in self-tolerance/autoimmunity. Through the secretion of IL-17, Th17 cells act in promotion of inflammation and are thus a major potential therapeutic target in autoimmune disorders. Recent reports have brought to light that the IL-17 family cytokines, IL-17A, IL-17F and IL-17AF, can directly act on CD4+ T-cells, both in murine and human systems, inducing functional changes in these cells. Here we show that this action is preferentially targeted toward naïve, but not memory, CD4+ T-cells. Naïve cells showed transcriptome changes as early as 48 hours post-IL-17 exposure, whereas memory cells remained unaffected as late as 7 days. These functional differences occurred despite similar IL-17 receptor expression on these subsets and were maintained in co-culture/transwell systems, with each subset maintaining its functional response to IL-17. Importantly, there were differences in downstream transcriptional signaling by the three IL-17 cytokines, with the IL-17AF heterodimer conferring both the greatest transcriptional change and most altered functional consequences. Detailed transcriptome analysis provides important insights into the genes and pathways that are modulated as a result of IL-17-mediated signaling and may serve as targets of future therapies.
Funder
National Institute of Allergy and Infectious Diseases
U.S. Department of Veterans Affairs
NIH NCI
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献