IL-17 cytokines preferentially act on naïve CD4+ T cells with the IL-17AF heterodimer inducing the greatest functional changes

Author:

Crawford Michael P.,Borcherding Nicholas,Karandikar Nitin J.ORCID

Abstract

CD4+ T-helper 17 (Th17) T cells are a key population in protective immunity during infection and in self-tolerance/autoimmunity. Through the secretion of IL-17, Th17 cells act in promotion of inflammation and are thus a major potential therapeutic target in autoimmune disorders. Recent reports have brought to light that the IL-17 family cytokines, IL-17A, IL-17F and IL-17AF, can directly act on CD4+ T-cells, both in murine and human systems, inducing functional changes in these cells. Here we show that this action is preferentially targeted toward naïve, but not memory, CD4+ T-cells. Naïve cells showed transcriptome changes as early as 48 hours post-IL-17 exposure, whereas memory cells remained unaffected as late as 7 days. These functional differences occurred despite similar IL-17 receptor expression on these subsets and were maintained in co-culture/transwell systems, with each subset maintaining its functional response to IL-17. Importantly, there were differences in downstream transcriptional signaling by the three IL-17 cytokines, with the IL-17AF heterodimer conferring both the greatest transcriptional change and most altered functional consequences. Detailed transcriptome analysis provides important insights into the genes and pathways that are modulated as a result of IL-17-mediated signaling and may serve as targets of future therapies.

Funder

National Institute of Allergy and Infectious Diseases

U.S. Department of Veterans Affairs

NIH NCI

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mitochondria: a breakthrough in combating rheumatoid arthritis;Frontiers in Medicine;2024-08-05

2. The pathogenetic role of Th17 immune response in atopic dermatitis;Current Opinion in Allergy & Clinical Immunology;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3