Proteomics biomarker discovery for individualized prevention of familial pancreatic cancer using statistical learning

Author:

Ha Chung Shing RexORCID,Müller-Nurasyid MartinaORCID,Petrera Agnese,Hauck Stefanie M.,Marini FedericoORCID,Bartsch Detlef K.,Slater Emily P.,Strauch Konstantin

Abstract

Background The low five-year survival rate of pancreatic ductal adenocarcinoma (PDAC) and the low diagnostic rate of early-stage PDAC via imaging highlight the need to discover novel biomarkers and improve the current screening procedures for early diagnosis. Familial pancreatic cancer (FPC) describes the cases of PDAC that are present in two or more individuals within a circle of first-degree relatives. Using innovative high-throughput proteomics, we were able to quantify the protein profiles of individuals at risk from FPC families in different potential pre-cancer stages. However, the high-dimensional proteomics data structure challenges the use of traditional statistical analysis tools. Hence, we applied advanced statistical learning methods to enhance the analysis and improve the results’ interpretability. Methods We applied model-based gradient boosting and adaptive lasso to deal with the small, unbalanced study design via simultaneous variable selection and model fitting. In addition, we used stability selection to identify a stable subset of selected biomarkers and, as a result, obtain even more interpretable results. In each step, we compared the performance of the different analytical pipelines and validated our approaches via simulation scenarios. Results In the simulation study, model-based gradient boosting showed a more accurate prediction performance in the small, unbalanced, and high-dimensional datasets than adaptive lasso and could identify more relevant variables. Furthermore, using model-based gradient boosting, we discovered a subset of promising serum biomarkers that may potentially improve the current screening procedure of FPC. Conclusion Advanced statistical learning methods helped us overcome the shortcomings of an unbalanced study design in a valuable clinical dataset. The discovered serum biomarkers provide us with a clear direction for further investigations and more precise clinical hypotheses regarding the development of FPC and optimal strategies for its early detection.

Funder

Wilhelm Sander-Stiftung

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. Familial Pancreatic Cancer: Current Perspectives;J. Llach;’Cancer Manag. Res.,2020

2. Pancreatic resection for pancreatic cancer;J. Bachmann;HPB,2006

3. Projections of cancer incidence and cancer‐related deaths in Germany by 2020 and 2030;A. S. Quante;Cancer Med.,2016

4. Cancer risk among the relatives of patients with pancreatic ductal adenocarcinoma;M. Del Chiaro;Pancreatol. Off. J. Int. Assoc. Pancreatol. IAP Al,2007

5. Refinement of screening for familial pancreatic cancer;D. K. Bartsch;Gut,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3