New AI-algorithms on smartphones to detect skin cancer in a clinical setting—A validation study

Author:

Kränke TeresaORCID,Tripolt-Droschl Katharina,Röd Lukas,Hofmann-Wellenhof Rainer,Koppitz Michael,Tripolt Michael

Abstract

Background and objectives The incidence of skin cancer is rising worldwide and there is medical need to optimize its early detection. This study was conducted to determine the diagnostic and risk-assessment accuracy of two new diagnosis-based neural networks (analyze and detect), which comply with the CE-criteria, in evaluating the malignant potential of various skin lesions on a smartphone. Of note, the intention of our study was to evaluate the performance of these medical products in a clinical setting for the first time. Methods This was a prospective, single-center clinical study at one tertiary referral center in Graz, Austria. Patients, who were either scheduled for preventive skin examination or removal of at least one skin lesion were eligible for participation. Patients were assessed by at least two dermatologists and by the integrated algorithms on different mobile phones. The lesions to be recorded were randomly selected by the dermatologists. The diagnosis of the algorithm was stated as correct if it matched the diagnosis of the two dermatologists or the histology (if available). The histology was the reference standard, however, if both clinicians considered a lesion as being benign no histology was performed and the dermatologists were stated as reference standard. Results A total of 238 patients with 1171 lesions (86 female; 36.13%) with an average age of 66.19 (SD = 17.05) was included. Sensitivity and specificity of the detect algorithm were 96.4% (CI 93.94–98.85) and 94.85% (CI 92.46–97.23); for the analyze algorithm a sensitivity of 95.35% (CI 93.45–97.25) and a specificity of 90.32% (CI 88.1–92.54) were achieved. Discussion The studied neural networks succeeded analyzing the risk of skin lesions with a high diagnostic accuracy showing that they are sufficient tools in calculating the probability of a skin lesion being malignant. In conjunction with the wide spread use of smartphones this new AI approach opens the opportunity for a higher early detection rate of skin cancer with consecutive lower epidemiological burden of metastatic cancer and reducing health care costs. This neural network moreover facilitates the empowerment of patients, especially in regions with a low density of medical doctors. Registration Approved and registered at the ethics committee of the Medical University of Graz, Austria (Approval number: 30–199 ex 17/18).

Funder

Amiflow Ltd. Graz

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference48 articles.

1. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018;J Ferlay;Eur J Cancer,2018

2. World Cancer Research Fund. Wcrf.org/dietandcancer/cancer-trends/skin-cancer-statistics. Last accessed: March 27th, 2021

3. A systematic review of worldwide incidence of nonmelanoma skin cancer;A Lomas;Br J Dermatol,2012

4. Non-melanoma skin cancer incidence and impact of skin cancer screening on incidence;N Eisemann;J Invest Dermatol,2014

5. Update on metastatic basal cell carcinoma: A summary of published cases from 1981 through 2011;A. Wysong;JAMA Dermatol,2013

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3