PET: Parameter-efficient Knowledge Distillation on Transformer

Author:

Jeon HyojinORCID,Park Seungcheol,Kim Jin-Gee,Kang U.ORCID

Abstract

Given a large Transformer model, how can we obtain a small and computationally efficient model which maintains the performance of the original model? Transformer has shown significant performance improvements for many NLP tasks in recent years. However, their large size, expensive computational cost, and long inference time make it challenging to deploy them to resource-constrained devices. Existing Transformer compression methods mainly focus on reducing the size of the encoder ignoring the fact that the decoder takes the major portion of the long inference time. In this paper, we propose PET (Parameter-Efficient knowledge distillation on Transformer), an efficient Transformer compression method that reduces the size of both the encoder and decoder. In PET, we identify and exploit pairs of parameter groups for efficient weight sharing, and employ a warm-up process using a simplified task to increase the gain through Knowledge Distillation. Extensive experiments on five real-world datasets show that PET outperforms existing methods in machine translation tasks. Specifically, on the IWSLT’14 EN→DE task, PET reduces the memory usage by 81.20% and accelerates the inference speed by 45.15% compared to the uncompressed model, with a minor decrease in BLEU score of 0.27.

Funder

Institute of Information communications Technology Planning & Evaluation

Artificial Intelligence Graduate School Program

Artificial Intelligence Innovation Hub

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is All you Need. In: Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA; 2017. p. 5998–6008.

2. Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In: NAACL-HLT (1). Association for Computational Linguistics; 2019. p. 4171–4186.

3. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer;C Raffel;J Mach Learn Res,2020

4. Scao TL, Fan A, Akiki C, Pavlick E, Ilic S, Hesslow D, et al. BLOOM: A 176B-Parameter Open-Access Multilingual Language Model. CoRR. 2022;abs/2211.05100.

5. Wang Z, Li M, Xu R, Zhou L, Lei J, Lin X, et al. Language Models with Image Descriptors are Strong Few-Shot Video-Language Learners. CoRR. 2022;abs/2205.10747.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3