BCR-Net: A deep learning framework to predict breast cancer recurrence from histopathology images

Author:

Su ZiyuORCID,Niazi Muhammad Khalid Khan,Tavolara Thomas E.,Niu Shuo,Tozbikian Gary H.,Wesolowski Robert,Gurcan Metin N.

Abstract

Breast cancer is the most common malignancy in women, with over 40,000 deaths annually in the United States alone. Clinicians often rely on the breast cancer recurrence score, Oncotype DX (ODX), for risk stratification of breast cancer patients, by using ODX as a guide for personalized therapy. However, ODX and similar gene assays are expensive, time-consuming, and tissue destructive. Therefore, developing an AI-based ODX prediction model that identifies patients who will benefit from chemotherapy in the same way that ODX does would give a low-cost alternative to the genomic test. To overcome this problem, we developed a deep learning framework, Breast Cancer Recurrence Network (BCR-Net), which automatically predicts ODX recurrence risk from histopathology slides. Our proposed framework has two steps. First, it intelligently samples discriminative features from whole-slide histopathology images of breast cancer patients. Then, it automatically weights all features through a multiple instance learning model to predict the recurrence score at the slide level. On a dataset of H&E and Ki67 breast cancer resection whole slides images (WSIs) from 99 anonymized patients, the proposed framework achieved an overall AUC of 0.775 (68.9% and 71.1% accuracies for low and high risk) on H&E WSIs and overall AUC of 0.811 (80.8% and 79.2% accuracies for low and high risk) on Ki67 WSIs of breast cancer patients. Our findings provide strong evidence for automatically risk-stratify patients with a high degree of confidence. Our experiments reveal that the BCR-Net outperforms the state-of-the-art WSI classification models. Moreover, BCR-Net is highly efficient with low computational needs, making it practical to deploy in limited computational settings.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference55 articles.

1. American Cancer Society Cancer Statistics 2021 Report;J Nucl Med,2021

2. WHO Classification of Tumours: Pathology and Genetics of Tumours of the Breast and Female Genital Organs;R. Vajpeyi;J Clin Pathol,2005

3. The American Joint Committee on Cancer: the 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM;SB Edge;Ann Surg Oncol,2010

4. Prognostic significance of Nottingham histologic grade in invasive breast carcinoma;EA Rakha;J Clin Oncol,2008

5. Deconstructing the molecular portraits of breast cancer;A Prat;Mol Oncol,2011

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3