Improved electrochemical performance of multi-walled carbon nanotube reinforced gelatin biopolymer for transient energy storage applications

Author:

Alam Rabeya Binta,Ahmad Md. Hasive,Islam Muhammad RakibulORCID

Abstract

Multi-walled carbon nanotube (MWCNT) incorporated biodegradable gelatin nanocomposites (Gel/MWCNT) have been prepared following a facile solution processing method. The Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electronic microscopy (FESEM), and water contact angle (WCA) measurements revealed improved structural properties and surface morphological features of the nanocomposite films due to the incorporation of MWCNT. A four-fold decrease in the DC resistivity was obtained due to the addition of MWCNTs. The specific capacitance of the nanocomposite increased from 0.12 F/g to 12.7 F/g at a current density of 0.3 μA/cm2 due to the incorporation of 0.05 wt.% MWCNT. EIS analysis and the corresponding Nyquist plots demonstrated the contributions of the different electrical components responsible for the improved electrochemical performance were evaluated using an equivalent AC circuit. The incorporation of MWCNTs was found to reduce the charge-transfer resistance from 127 Ω to 75 Ω and increase the double-layer capacitance from 4 nF to 9 nF. The Gel/MWCNT nanocomposite demonstrated improved cyclic stability with a retention of 95% of the initial capacitance even after 5000 charging/discharging cycles. The biodegradability test showed that the nanocomposite degraded completely after 30 hours of immersion in water. This fully biocompatible nature of the nanocomposites with high specific capacitance and low charge transfer resistance may offer a promising route to fabricate a nature-friendly electrode material for energy storage applications.

Funder

University Grants Commission of Bangladesh

Committee for Advanced Studies and Research (CASR), Bangladesh University of Engineering and Technology

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3