A single-molecule method for measuring fluorophore labeling yields for the study of membrane protein oligomerization in membranes

Author:

Ernst Melanie,Ozturk Tugba N.ORCID,Robertson Janice L.ORCID

Abstract

Membrane proteins are often observed as higher-order oligomers, and in some cases in multiple stoichiometric forms, raising the question of whether dynamic oligomerization can be linked to modulation of function. To better understand this potential regulatory mechanism, there is an ongoing effort to quantify equilibrium reactions of membrane protein oligomerization directly in membranes. Single-molecule photobleaching analysis is particularly useful for this as it provides a binary readout of fluorophores attached to protein subunits at dilute conditions. However, any quantification of stoichiometry also critically requires knowing the probability that a subunit is fluorescently labeled. Since labeling uncertainty is often unavoidable, we developed an approach to estimate labeling yields using the photobleaching probability distribution of an intrinsic dimeric control. By iterative fitting of an experimental dimeric photobleaching probability distribution to an expected dimer model, we estimate the fluorophore labeling yields and find agreement with direct measurements of labeling of the purified protein by UV-VIS absorbance before reconstitution. Using this labeling prediction, similar estimation methods are applied to determine the dissociation constant of reactive CLC-ec1 dimerization constructs without prior knowledge of the fluorophore labeling yield. Finally, we estimate the operational range of subunit labeling yields that allows for discrimination of monomer and dimer populations across the reactive range of mole fraction densities. Thus, our study maps out a practical method for quantifying fluorophore labeling directly from single-molecule photobleaching data, improving the ability to quantify reactive membrane protein stoichiometry in membranes.

Funder

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference29 articles.

1. EncoMPASS: An online database for analyzing structure and symmetry in membrane proteins;E Sarti;Nucleic Acids Res,2019

2. The structure of the potassium channel: Molecular basis of K+ conduction and selectivity;DA Doyle;Science (1979),1998

3. Design, function and structure of a monomeric ClC transporter;JL Robertson;Nature,2010

4. The role of trimerization in the osmoregulated betaine transporter BetP;C Perez;EMBO Rep,2011

5. Unusual mode of dimerization of retinitis pigmentosa-associated F220C rhodopsin;G Khelashvili;Sci Rep,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dimerization mechanism of an inverted-topology ion channel in membranes;Proceedings of the National Academy of Sciences;2023-11-13

2. A thermodynamic analysis of CLC transporter dimerization in lipid bilayers;Proceedings of the National Academy of Sciences;2023-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3