Detecting fatigue of sport horses with biomechanical gait features using inertial sensors

Author:

Darbandi HamedORCID,Munsters CarolienORCID,Parmentier Jeanne,Havinga Paul

Abstract

Detection of fatigue helps prevent injuries and optimize the performance of horses. Previous studies tried to determine fatigue using physiological parameters. However, measuring the physiological parameters, e.g., plasma lactate, is invasive and can be affected by different factors. In addition, the measurement cannot be done automatically and requires a veterinarian for sample collection. This study investigated the possibility of detecting fatigue non-invasively using a minimum number of body-mounted inertial sensors. Using the inertial sensors, sixty sport horses were measured during walk and trot before and after high and low-intensity exercises. Then, biomechanical features were extracted from the output signals. A number of features were assigned as important fatigue indicators using neighborhood component analysis. Based on the fatigue indicators, machine learning models were developed for classifying strides to non-fatigue and fatigue. As an outcome, this study confirmed that biomechanical features can indicate fatigue in horses, such as stance duration, swing duration, and limb range of motion. The fatigue classification model resulted in high accuracy during both walk and trot. In conclusion, fatigue can be detected during exercise by using the output of body-mounted inertial sensors.

Funder

EFRO OP-Oost

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High‐level competition exercise and related fatigue are associated with stride and jumping characteristics in eventing horses;Equine Veterinary Journal;2023-09-11

2. Terrain Type Detection for Smart Equine Gait Analysis Systems Using Inertial Sensors and Machine Learning;2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3