Effects of phase synchronization and frequency specificity in the encoding of conditioned fear–a web-based fear conditioning study

Author:

Plog ElenaORCID,Antov Martin I.ORCID,Bierwirth PhilippORCID,Stockhorst Ursula

Abstract

Oscillatory synchronization in the theta-frequency band was found to play a causal role in binding information of different modalities in declarative memory. Moreover, there is first evidence from a laboratory study that theta-synchronized (vs. asynchronized) multimodal input in a classical fear conditioning paradigm resulted in better discrimination of a threat-associated stimulus when compared to perceptually similar stimuli never associated with the aversive unconditioned stimulus (US). Effects manifested in affective ratings and ratings of contingency knowledge. However, theta-specificity was not addressed so far. Thus, in the present pre-registered web-based fear conditioning study, we compared synchronized (vs. asynchronized) input in a theta-frequency band vs. the same synchronization manipulation in a delta frequency. Based on our previous laboratory design, five visual gratings of different orientations (25°, 35°, 45°, 55°, 65°) served as conditioned stimuli (CS) with only one (CS+) paired with the auditory aversive US. Both CS and US were luminance or amplitude modulated, respectively, in a theta (4 Hz) or delta (1.7 Hz) frequency. In both frequencies, CS-US pairings were presented either in-phase (0° phase lag) or out-of-phase (90°, 180°, 270°), resulting in four independent groups (each group N = 40). Phase synchronization augmented the discrimination of CSs in CS-US contingency knowledge but did not affect valence and arousal ratings. Interestingly, this effect occurred independent of frequency. In sum, the current study proves the ability to successfully conduct complex generalization fear conditioning in an online setting. Based on this prerequisite, our data supports a causal role of phase synchronization in the declarative CS-US associations for low frequencies rather than in the specific theta-frequency band.

Funder

University of Osnabrück, Germany

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3